

Fig. 1. Molecular structure and numbering scheme for $\left[\operatorname{Ir}\left\{\mathrm{P}\left(4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3}\right\}_{2}(\mathrm{cod})\right]^{+}$.

Chaloner, 1989), and is related to $\left[\operatorname{Ir}\left(\mathrm{PCy}_{3}\right)(\mathrm{py})-\right.$ (cod) $]\left[\mathrm{PF}_{6}\right]$, which has been widely used as a catalyst for the reduction of hindered alkenes (Crabtree, 1979). The structures of $\left[\operatorname{Ir}\left(\mathrm{PCy}_{3}\right)(\mathrm{py})(\mathrm{cod})\right]\left[\mathrm{PF}_{6}\right]$ and
$\left[\operatorname{Ir}\left\{\mathrm{P}\left(2-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3}\right\}(\mathrm{py})\right]\left[\mathrm{PF}_{6}\right]$ have been determined, and show distortions due to the bulk of the phosphine ligands (Abbassioun, Hitchcock \& Chaloner, 1989a). The conformation of the cod ligand is similar in these complexes. The structure of $\left[\operatorname{Ir}(\mathrm{py})_{2}(\mathrm{cod})\right]-$
$\left[\mathrm{BPh}_{4}\right]$, containing the precursor cation, has also been established (Abbassioun, Hitchcock \& Chaloner, 1989b)

We thank Johnson Matthey for the loan of iridium salts.

References

Abbassioun, M. S. \& Chaloner, P. A. (1989). Unpublished results.
Abbassioun, M. S., Hitchcock, P. B. \& Chaloner, P. A. (1989a). Acta Cryst. C45, 331-333.
Abbassioun, M. S., Hitchcock, P. B. \& Chaloner, P. A. (1989b). Acta Cryst. C45, 953-954.
Crabtree, R. H. (1979). Acc. Chem. Res. 12, 331-338.
Crabtree, R. H. \& Moorehouse, S. M. (1986). Inorg. Synth. 24, 173-176.
Enraf-Nonius (1982). SDP-Plus Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
International Tables for X-ray Crystallography (1974). Vol IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1990). C46, 1113-1115

Structure of Difluorobis(trifluoromethyl)tellurium

By Hans Preut
Fachbereich Chemie, Universität Dortmund, Postfach 500500, D-4600 Dortmund 50, Federal Republic of Germany
Bernd Wilkes
Kali-Chemie AG, Postfach 220, D-3000 Hannover 1, Federal Republic of Germany
and Dieter Naumann
Institut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, D-5000 Köln 41, Federal Republic of Germany

(Received 27 October 1989; accepted 5 January 1990)

Abstract

TeF}_{2}\left(\mathrm{CF}_{3}\right)_{2}\right], M_{r}=303 \cdot 61\), monoclinic, $C 2 / c, a=22.065$ (4),$\quad b=9.764$ (2), $c=8.981$ (3) \AA, $\beta=91 \cdot 66$ (2) ${ }^{\circ}, \quad V=1934 \cdot 1(8) \AA^{3}, \quad Z=12, \quad D_{x}=$ $3 \cdot 128 \mathrm{Mg} \mathrm{m}^{-3}, \quad F(000)=1632, \quad \lambda($ Mo Ka $)=$ $0.71073 \AA, \mu=4.71 \mathrm{~mm}^{-1}, T=291$ (1) K, final $R=$ 0.039 for 2474 unique observed $[F \geq 4.0 \sigma(F)]$ diffractometer data. The asymmetric unit of the crystal contains one and a half $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{TeF}_{2}$ molecules. The surrounding of each of the two independent Te

0108-2701/90/061113-03\$03.00
atoms can roughly be described as a trigonal bipyramid with two C atoms and the non-bonding electron pair in the equatorial plane. The crystal contains intermolecular $\mathrm{Te} \cdots \mathrm{F}$ and $\mathrm{F} \cdots \mathrm{F}$ distances which are significantly shorter than the sum of the corresponding van der Waals radii.

Experimental. The title compound was prepared from $\mathrm{Te}\left(\mathrm{CF}_{3}\right)_{2}$ with XeF_{2} (Naumann \& Herberg, © 1990 International Union of Crystallography

Table 1. Atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{4}\right)$

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
$\mathrm{Te}(1)$	0.0	0.06454 (4)	$0 \cdot 25$	343
$\mathrm{Te}(2)$	0.33436 (1)	0.31036 (3)	0.42007 (3)	367
F(1)	-0.0475 (1)	$0 \cdot 1038$ (4)	0.0655 (3)	515
F(2)	0.3812 (2)	0.4267 (4)	$0 \cdot 2856$ (4)	612
F(3)	$0 \cdot 2909$ (1)	0.1493 (3)	$0 \cdot 4979$ (4)	514
F(11)	-0.1089 (2)	0.2382 (5)	0.2679 (5)	774
F(12)	-0.0329 (2)	0.3312 (4)	0.3751 (7)	933
F(13)	-0.0761 (3)	$0 \cdot 1679$ (6)	0.4797 (5)	1094
F(21)	0.2371 (2)	0.1895 (4)	0.2308 (5)	711
F(22)	0.2512 (2)	0.4009 (5)	$0 \cdot 1840$ (6)	953
F(23)	0.3117 (2)	0.2487 (7)	$0 \cdot 1046$ (5)	1096
F(24)	$0 \cdot 3725$ (2)	0.0549 (5)	0.2831 (7)	1075
F(25)	$0 \cdot 4170$ (2)	0.0907 (5)	0.4940 (5)	827
F(26)	0.4453 (2)	0.1941 (5)	0.3027 (7)	1046
C(11)	-0.0603 (3)	0.2136 (6)	$0 \cdot 3510$ (7)	511
C(21)	0.2787 (3)	0.2827 (7)	0.2163 (7)	550
C(22)	0.3984 (2)	$0 \cdot 1486$ (7)	$0 \cdot 3672$ (7)	559

Table 2. Bond distances (\AA) and angles (${ }^{\circ}$), torsion angles $\left({ }^{\circ}\right)$ and short intermolecular distances (\AA)
 0.5-z.
1982). Colourless crystals were obtained by slow sublimation in vacuo at 343 K . Crystal size $\sim 0.47 \times$ $0.37 \times 0.90 \mathrm{~mm}, D_{m}$ not determined, $\omega / 2 \theta$ scan, scan speed $0 \cdot 50-2 \cdot 50^{\circ} \mathrm{min}^{-1}$ in θ; Enraf-Nonius CAD-4 diffractometer, graphite-monochromated Mo $K \alpha$; lattice parameters from least-squares fit with 25 reflections up to $2 \theta=33.78^{\circ} ; \omega$ scans of low-order reflections along the three crystal axes showed acceptable mosaicity; three standard reflections $(18,0,0,006,080)$ recorded every 2.5 h , showed
intensity loss up to 40% over 344.03 h of X-ray exposure; 6199 reflections measured, $4 \cdot 0 \leq 2 \theta \leq 60 \cdot 0^{\circ}$, $-31 \leq h \leq 31,-13 \leq k \leq 13,0 \leq l \leq 12$; after averaging ($R_{\text {int }}=0.018$): 2814 unique reflections, 2474 with $F \geq 4.0 \sigma(F)$; Lorentz-polarization correction, decay correction (maximum correction factor 1.70 , minimum 0.97 , average 1.16) and absorption correction via ψ scans, max./min. transmission 1.00/0.92 (average 0.95); systematic absences ($h k l$) $h+k=2 n$ +1 and ($h 0 l$) with $h=2 n+1$ and $l=2 n+1$ conform to space groups $C 2 / c$ and $C c$; structure solution in space group $C 2 / c$ via Patterson function, ΔF syntheses and full-matrix least-squares refinement with anisotropic temperature factors for all atoms; refinement on F with 2474 reflections and 150 refined parameters; $w=1.0 /\left[\sigma^{2}(F)+\left(0.0037 F^{2}\right)\right]$ which led to featureless analysis of variance in terms of $\sin \theta$ and $F_{o} ; S=2.68, R=0.039, w R=0.043(R=0.044$, $w R=0.060$ with all data), $(\Delta / \sigma)_{\text {max }}=0.01$, largest peak in final ΔF map $\pm 2 \cdot 1$ (4) e \AA^{-3} near Te and

Fig. 1. Stereoscopic view (SHELXTL-PLUS) of the molecules, showing the atomic numbering scheme [symmetry code: $(a)-x$, $y, 0.5-z$].

Fig. 2. Stereoscopic view ($S C H A K A L$) of the unit cell (a vertical, b horizontal). Short intermolecular $\mathrm{Te} \cdots \mathrm{F}$ contacts lower than $3.0 \AA$ and $F \cdots F$ contacts lower than $2.7 \AA$ are indicated by broken lines.
± 0.6 (4) e \AA^{-3} in the remaining parts of the cell; no extinction correction; atomic scattering factors for neutral atoms and real and imaginary dispersion terms from International Tables for X-ray Crystallography (1974); programs: Enraf-Nonius Structure Determination Package (Frenz, 1985), PARST (Nardelli, 1983), SHELXTL-PLUS (Sheldrick, 1987), SCHAKAL (Keller, 1986), PCK83 (Williams, 1984), PLATON (Spek, 1982), MISSYM (Le Page, 1987). The molecules and the numbering scheme are shown in Fig. 1 and a stereoscopic view of the unit cell in Fig. 2. Positional parameters and the equivalent values of the displacement parameters are given in Table 1.* Bond lengths and angles, torsion angles and short intermolecular distances are given in Table 2.

* Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52581 (13 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Related literature. Naumann \& Herberg (1982).

References

Frenz, B. A. (1985). Enraf-Nonius Stucture Determination Package; SDP-Plus, version 3.0. Enraf-Nonius, Delft, The Netherlands.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham; Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Keller, E. (1986). SCHAKAL. A Fortran Program for the Graphical Representation of Molecular and Crystallographic Models. Univ. of Freiburg, Federal Republic of Germany.
Le Page, Y. (1987). J. Appl. Cryst. 20, 264-269.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Naumann, D. \& Herberg, S. (1982). J. Fluorine Chem. 19, 205-212.
Sheldrick, G. M. (1987). SHELXTL-PLUS (Release 3.4). An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. For Nicolet $R 3 m / V$. Univ. of Göttingen, Federal Republic of Germany.
Spek, A. L. (1982). The EUCLID Package. In Computational Crystallography, edited by D. Sayre, p.528. Oxford: Claredon Press.
Williams, D. E. (1984). PCK83. Quantum Chem. Program Exchange Program No. 481.

Acta Cryst. (1990). C46, 1115-1117

9-Ethylguaninium Tetrachloroaurate(III) Hydrate

By H. Preut, B. Fischer and B. Lippert
Fachbereich Chemie, Universität Dortmund, Postfach 500500, D-4600 Dortmund 50, Federal Republic of Germany

(Received 8 December 1989; accepted 19 January 1990)

Abstract

Amino-9-ethyl-6-oxo-1,6-dihydro$7 \mathrm{H}^{+}, 9 \mathrm{H}$-purinium tetrachloroaurate(III) hydrate, $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{5} \mathrm{O}^{+} . \mathrm{AuCl}_{4}^{-} \cdot \mathrm{H}_{2} \mathrm{O}, M_{r}=536 \cdot 98$, monoclinic, $P 2_{1} / n, a=7.345$ (2), $b=14.976$ (4), $c=13.366$ (5) \AA, $\beta=93.35(3)^{\circ}, \quad V=1467 \cdot 7(8) \AA^{3}, \quad Z=4, \quad D_{x}=$ $2.430 \mathrm{Mg} \mathrm{m}^{-3}, \quad F(000)=1008, \quad \lambda($ Mo K $\alpha)=$ $0.71073 \AA, \mu=10.74 \mathrm{~mm}^{-1}, T=291$ (1) K, final R $=0.039$ for 2378 unique observed $[F \geq 3.0 \sigma(F)]$ diffractometer data. The title compound consists of discrete 9 -ethylguaninium cations, tetrachloroaurate(III) anions and water molecules. The $\left[\mathrm{AuCl}_{4}\right]^{-}$ anion is planar with $\mathrm{Au}-\mathrm{Cl}$ distances in the range $2 \cdot 277$ (2)-2-283 (2) \AA.

Experimental. Orange-yellow needles of the title compound were obtained in 81% yield by cocrystallization of 9-ethylguanine and NaAuCl_{4} in $0 \cdot 1 \mathrm{M} \mathrm{HCl}$ and subsequent recrystallization from water at 276 K . A crystal of size $\sim 0.26 \times 0.04 \times 0.12 \mathrm{~mm}$ was used, D_{m} was not determined. Intensity data were collected with $\omega / 2 \theta$ scans, scan speed $4-15^{\circ} \mathrm{min}^{-1}$ in
θ and scan width $1 \cdot 2^{\circ}+$ dispersion. A Nicolet $R 3 \mathrm{~m} / V$ diffractometer with graphite-monochromated Mo $K \alpha$ radiation was used. The lattice parameters were determined from least-squares fit of 28 reflections with $2 \theta \leq 33.09^{\circ} ; \omega$ scans of low-order reflections along the three crystal axes showed acceptable mosaicity. Six standard reflections $(200,020,002, \overline{2} 00,0 \overline{2} 0,00 \overline{2})$ were recorded every 2.5 h , only random deviations were detected during 158 h of X-ray exposure; 10023 reflections with $3 \cdot 0$ $\leq 2 \theta \leq 50 \cdot 0^{\circ},-9 \leq h \leq 9,-18 \leq k \leq 18,-16 \leq l \leq$ 16 were measured. The data were corrected for Lorentz-polarization and absorption effects, the latter via ψ scans; the max./min. transmission factors were $1 \cdot 00 / 0 \cdot 53$. The intensities were averaged ($R_{\text {int }}=$ 0.065) to 2593 unique reflections, 2378 of which had $F \geq 3 \cdot 0 \sigma(F)$. The systematic absences $(h 0 l) h+l=2 n$ $+1,(0 k 0) k=2 n+1$ conform to space group $P 2_{1} / n$. The structure was solved from Patterson function and $\Delta \rho$ maps. It was refined (on F) using full-matrix least squares with anisotropic temperature factors for © 1990 International Union of Crystallography

